The preferred conformation of $\boldsymbol{\alpha}$-fluoroamides

John W. Banks, ${ }^{a}$ Andrei S. Batsanov, ${ }^{b}$ Judith A. K. Howard, ${ }^{b}$ David O'Hagan, ${ }^{*}{ }^{b}$ Henry S. Rzepa ${ }^{c}$ and Sonsoles Martin-Santamaria ${ }^{c}$
${ }^{a}$ Chemical Technology Department, Searle, Division of Monsanto, Whalton Rd., Morpeth, UK NE61 3 YA
${ }^{b}$ Department of Chemistry, University of Durham, Science Laboratories, South Road, Durham, UKDH1 3LE. E-mail: David.O'Hagan@durham.ac.uk
${ }^{c}$ Department of Chemistry, Imperial College of Science, Technology and Medicine, London, UK SW7 2AY

Received (in Cambridge, UK) 14th September 1999, Accepted 24th September 1999

X-Ray structures of two α-fluoroamide derivatives show the $\mathrm{O}=\mathrm{C}-\mathrm{C}-\mathrm{F}$ moiety tending towards a trans planar conformation, for which ab initio calculations suggest a deep (up to $8 \mathrm{kcal} \mathrm{mol}^{-1}$) potential minimum.

Fluorine substituents can have profound stereoelectronic and polar effects ${ }^{1}$ on the conformation of organic molecules, e.g. the gauche effect in 1,2-difluoroethane ${ }^{2}$ or the fluorine anomeric effect in α-fluoroethers. ${ }^{3}$ With one fluorine substituent in the α-position to a carbonyl group, as in α-fluoroaldehydes, ${ }^{4}$ α-fluoroketones ${ }^{5}$ and α-fluoroesters, ${ }^{6}$ the preferred conformation of the $\mathrm{O}=\mathrm{C}-\mathrm{C}-\mathrm{F}$ moiety is trans-planar, but the energy difference between cis and trans-conformations is rather small ($0.8-2.0 \mathrm{kcal} \mathrm{mol}{ }^{-1}$). For fluoroacetamide $\mathrm{FCH}_{2} \mathrm{CONH}_{2}, \mathrm{MO}$ calculations ${ }^{7}$ suggest a much bigger difference, $7.5 \mathrm{kcal} \mathrm{mol}^{-1}$ in favour of the trans-disposition of the F and O atoms, which was actually found by X-ray ${ }^{8}$ and neutron ${ }^{7}$ diffraction studies (it is noteworthy that the parent acetamide adopts an entirely different conformation ${ }^{9}$). It could be expected therefore that introduction of an α-fluorine substituent into a substituted amide will stabilise the $\mathrm{N}-\mathrm{C}(\mathrm{O})-\mathrm{C}-\mathrm{F}$ moiety in the conformation with the F atoms trans to the carbonyl and cis to the NH group. To verify this, we undertook the synthesis and X-ray structural and theoretical studies of mono-fluorinated compounds 1a and 2, and of non-fluorinated $\mathbf{1 b}$ for comparison. \dagger

1a $R=F$
1b $R=M e$
N-Fluoroacetyl-(S-phenylalanine 1a, the first N-fluoroacylated amino acid derivative, was prepared by coupling (S) phenylalanine with the acid chloride of monofluoroacetic acid $\mathrm{FCH}_{2} \mathrm{COCl}$, and 1b respectively with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCl}$. The X-ray structure of 1 a (Fig. 1) shows the $\mathrm{C}-\mathrm{F}$ bond oriented nearly cis to the $\mathrm{N}-\mathrm{H}$ and trans to the $\mathrm{C}=\mathrm{O}$ bond, with the $\mathrm{N}(1) \mathrm{C}(4) \mathrm{C}(5) \mathrm{F}$ torsion angle of $-16.0(2)^{\circ}$. The entire $\mathrm{HO}_{2} \mathrm{C}-\mathrm{C}-\mathrm{NH}-\mathrm{C}(=\mathrm{O})-$ $\mathrm{C}-\mathrm{F}$ moiety is roughly planar, with the torsion angles $\mathrm{O}(2)$ $\mathrm{C}(1) \mathrm{C}(2) \mathrm{N}(1)-9.2(2)^{\circ}$ and $\mathrm{C}(1) \mathrm{C}(2) \mathrm{N}(1) \mathrm{C}(4)-162.2(1)^{\circ}$, compared to $151.6(2)^{\circ}$ and $-58.9(3)^{\circ}$, respectively, in $\mathbf{1 b}$. Thus, while in 1b both the carboxy and the amide protons participate in intermolecular hydrogen bonds (Fig. 2), in 1a only the former does, while $\mathrm{H}(1 \mathrm{~N})$ forms a bifurcated intramolecular hydrogen bond with F and $\mathrm{O}(2)$, at distances $\mathrm{H} \cdots \mathrm{F} 2.27(2)$ and $\mathrm{H} \cdots \mathrm{O}$ 2.29(2) Å.
α-Fluoropropionamide 2 was then studied, to establish whether the trans conformation is affected when a substituent is

Fig. 1 Molecular structure of 1a (50% thermal ellipsoids) showing disorder in the phenyl group.

Fig. 2 Molecular structure of 1b.
J. Chem. Soc., Perkin Trans. 2, 1999, 2409-2411

Fig. 3 An asymmetric unit in the structure of 2, containing S (solid) and R (dashed) isomers.
attached to the fluoromethyl group. This amide 2 was prepared from (S)-alanine by a diazotisation reaction in the presence of hydrogen fluoride-pyridine ${ }^{10,11}$ (see Scheme 1), whereby the

Scheme 1 i, NaNO_{2}, HF-pyridine (83%); ii, SOCl_{2} (61\%); iii, aniline (17\%).
amino group is substituted by fluorine with predominant retention of the absolute configuration. The resultant α-fluoropropionic acid 3 comprised 90% of the (S) and 10% of the (R) enantiomer, as was assessed according to a previously described technique, ${ }^{12}$ by ${ }^{19} \mathrm{~F}$ NMR of its complex with a chiral base. By treating 3 with thionyl chloride, it was converted to its acid chloride, which was then coupled to aniline to generate 2 , which was characterised by its X-ray crystal structure.

The asymmetric unit of 2 (Fig. 3) contains two molecular sites, one of which (A) is occupied by $79(1) \%$ of $(S) \mathbf{- 2}$ and $21(1) \%$ of $(R)-2$ and the other (B) by the (S)-isomer only. Thus the overall (S / R) enantiomeric composition is $c a .9: 1$, in accordance with the NMR data. Molecule B retains the anti planar orientation of the $\mathrm{C}-\mathrm{F}$ and $\mathrm{C}=\mathrm{O}$ bonds, with the $\mathrm{N}-$ $\mathrm{C}(\mathrm{O})-\mathrm{C}-\mathrm{F}$ torsion angle of $9.9(4)^{\circ}$. At site A , this angle is increased to $24.5(5)^{\circ}$ for the major (S) component and $-35(1)^{\circ}$ for the minor (R) one. This conformational distortion may be due to the peculiar crystal packing, required to accommodate both enantiomers at the same crystal site. Each molecule is linked with its own translational (along the x direction) equivalents by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds of equal strength.

An ab initio analysis of N-methyl-2-(S)-fluoropropionamide 4 was carried out at the B3LYP/6-31G*(d) level using the

4

GAUSSIAN98 program, ${ }^{13}$ in order to quantify the dependence of the conformation on the $\mathrm{F}-\mathrm{C}-\mathrm{C}=\mathrm{O}$ torsion angle (τ). The calculated energy profile (Fig. 4) shows a single distinct minimum at $\tau=180^{\circ}(\mathrm{C}-\mathrm{F}$ and $\mathrm{N}-\mathrm{H}$ bonds eclipsed), the maximum at $\tau=300^{\circ}$ and a plateau at about $\tau=60^{\circ}$. The maximum is due

Fig. 4 Rotational energy profile of N-methyl-2-fluoropropionamide 4 monitoring rotation around the $\mathrm{C}-\mathrm{C}(\mathrm{O})$ bond. $A b$ initio calculations were carried out at the B3LYP/6-31G*(d) level. Energies of conformations $\mathbf{1 a}$ and $\mathbf{2}$ are indicated in the profile.
to $\mathrm{H} \cdots \mathrm{H}$ steric repulsions when the methyl group approaches $\mathrm{N}-\mathrm{H}$, the preferred methyl group location being in the hemisphere proximate to the carbonyl group. The plateau indicates some stabilisation of the gauche conformation, in which the $\mathrm{C}-\mathrm{H}$ bond eclipses $\mathrm{N}-\mathrm{H}$. It is noteworthy that fluoroacetamide ${ }^{7}$ shows a distinct potential minimum for this conformation, second deepest after that at $\tau=180^{\circ}$. The energy difference of ca. $7 \mathrm{kcal} \mathrm{mol}^{-1}$ between the cis $(\tau=0)$ and trans ($\tau=180^{\circ}$) conformers of $\mathbf{4}$ is similar to that in fluoroacetamide ($7.5 \mathrm{kcal} \mathrm{mol}^{-1}$) and at least four times greater in the other α-fluorocarbonyl systems studied earlier. ${ }^{4-6}$ The stabilisation of the trans conformer is due mainly to the interaction between fluorine lone pairs and the $\mathrm{N}-\mathrm{H} \sigma^{*}$ orbital, which contributes $3.1 \mathrm{kcal} \mathrm{mol}^{-1}$, according to NBO analysis ${ }^{14}$ of the interaction energies. The rest of the energy difference is due to minor effects, viz. a greater interaction in the trans conformation between the $\mathrm{C}-\mathrm{F} \sigma$ orbital and both the antiperiplanar $\mathrm{C}=\mathrm{O} \sigma^{*}$ orbital ($1 \mathrm{kcal} \mathrm{mol}^{-1}$) and the antiperiplanar methyl $\mathrm{C}-\mathrm{H} \sigma^{*}$ orbital ($1 \mathrm{kcal} \mathrm{mol}^{-1}$). The trans conformer also has the smaller dipole moment (2.1 D) since the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{F}$ bond dipoles are opposed, compared to 4.8 D in the cis conformer where they re-inforce the charge separation.

It is important that the fluorine effect can not be explained simply by formation of an intramolecular hydrogen bond $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$, although the $\mathrm{H}(1 \mathrm{~N}) \cdots \mathrm{F}$ distance observed in $\mathbf{1 a}$ is typical for such bonds. ${ }^{15,16}$ A survey of structural data ${ }^{15,16}$ shows that a F atom bonded to carbon (in contrast with 'inorganic' fluorine) forms weak hydrogen bonds, e.g. 2.4 kcal mol^{-1} for $\mathrm{H}_{3} \mathrm{CF} \cdots \mathrm{HOH}$ vs. 5 to $10 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{H} \cdots \mathrm{O}$ bonds. ${ }^{15}$

In general it has proven very difficult to prepare peptides containing α-fluorinated substituents within the amino acid residues, although there have been some limited successes ${ }^{17,18}$ but clearly if synthetic methods were developed the current observations suggest that the substitution of the $\mathrm{C}-\mathrm{F}$ bond into peptides could perhaps offer a valuable tool for controlling peptide conformation.

Notes and references

\dagger X-Ray diffraction experiments on a Rigaku AFC6S 4-circle diffractometer ($\mathrm{Cu}-\mathrm{K} \alpha$ radiation) for $\mathbf{1 b}$ and 2, SMART 1K CCD area detector diffractometer ($\mathrm{Mo}-\mathrm{K} \alpha$ radiation) for $\mathbf{1 a}$; structure solution (direct methods) and least squares refinement (against F^{2} of all data) with

SHELXTL software (G. M. Sheldrick, Bruker Analytical X-ray Systems, Madison, Wisconsin, USA, 1997). CCDC reference number 188/188.

1a: $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{FNO}_{3}, M=225.22, T=120 \mathrm{~K}$, orthorhombic, space group $P 2_{12} 2_{1} 2$ (No. 18), $a=9.366(1), \quad b=16.003(2), \quad c=7.598(1) ~ A ̊, \quad U=$ $1138.8(1) \AA^{3}, Z=4, D_{\mathrm{x}}=1.314 \mathrm{~g} \mathrm{~cm}^{-3}, \bar{\lambda}=0.71073 \AA, \mu=0.11 \mathrm{~mm}^{-1}$, 8013 reflections (2596 unique) with $2 \theta \leq 55^{\circ}, 192$ variables refined to $R=0.032$ [2497 data, $I \geq 2 \sigma(I)$], $w R\left(F^{2}\right)=0.080, \Delta \rho_{\text {max,min }}=0.19,-0.24$ e \AA^{-3}. The phenyl ring disorder was rationalised as two positions (differing by an 18° libration) with 50% occupancies, which were refined with restraints to regular hexagonal ring and equal anisotropic ADP for two positions of each atom.

1b: $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}, M=221.25, T=150 \mathrm{~K}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$ (No. 19), $a=5.754(2), b=8.139(2), c=24.873(2) \AA, \quad U=$ 1164.9(4) $\AA^{3}, Z=4, D_{\mathrm{x}}=1.262 \mathrm{~g} \mathrm{~cm}^{-3}, \bar{\lambda}=1.54184 \AA, \mu=0.75 \mathrm{~mm}^{-1}$, 1899 reflections (1597 unique) with $2 \theta \leq 150^{\circ}, 172$ variables refined to $R=0.036$ [1417 data, $I \geq 2 \sigma(I)$], $w R\left(F^{2}\right)=0.084, \Delta \rho_{\text {max,min }}=0.15,-0.15$ e \AA^{-3}. The absolute configuration was confirmed by anomalous scattering: Flack parameter $-0.16(33)$.

2: $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{FNO}, M=167.18, T=150 \mathrm{~K}$, triclinic, space group $P 1$ (No. 1), $\quad a=5.367(1), \quad b=8.821(4), \quad c=9.893(3) ~ \AA \AA, \quad a=106.65(2), \quad \beta=$ 101.84(2), $\gamma=105.13(2)^{\circ}, U=412.8(2) \AA^{3}, Z=2, D_{\mathrm{x}}=1.345 \mathrm{~g} \mathrm{~cm}^{-3}$, $\bar{\lambda}=1.54184 \AA, \mu=0.87 \mathrm{~mm}^{-1}, 1582$ unique reflections with $2 \theta \leq 150^{\circ}$, 236 variables refined to $R=0.043$ [1482 data, $I \geq 2 \sigma(I)$], $w R\left(F^{2}\right)=0.154$, $\Delta \rho_{\text {max }, \min }=0.22,-0.29$ e \AA^{-3}. The absolute configuration was confirmed by anomalous scattering: Flack parameter 0.0(2).

1 D. O’Hagan and H. S. Rzepa, Chem. Commun., 1997, 645.
2 N. C. Craig, A. Chen, K. H. Suh, S. Klee, G. C. Mellau, B. P. Winnewisser and M. Winnewisser, J. Am. Chem. Soc., 1997, 119, 4789.

3 H. Senderowitz, P. Aped and B. Fuchs, Tetrahedron, 1993, 49, 3879.
4 H. V. Phan and J. R. Durig, J. Mol. Struct. (THEOCHEM), 1990, 209, 333.
5 R. J. Abraham, A. D. Jones, M. A. Warne, R. Rittner and C. T. Tormena, J. Chem. Soc., Perkin Trans. 2, 1966, 533.

6 B. J. van der Veken, S. Truyen, W. A. Herrebout and G. Watkins, J. Mol. Struct., 1993, 293, 55.

7 D. O. Hughes and R. W. H. Small, Acta Crystallogr., 1962, 15, 933.
8 G. A. Jeffrey, J. R. Ruble, R. K. McMullan, D. J. DeFrees and J. A. Pople, Acta Crystallogr., Sect. B, 1981, 37, 1885.

9 G. A. Jeffrey, J. R. Ruble, R. K. McMullan, D. J. DeFrees, J. S. Binkley and J. A. Pople, Acta Crystallogr., Sect. B, 1980, 36, 2292.

10 G. A. Olah, G. K. S. Prakash and Y. L. Chao, Helv. Chim. Acta., 1981, 64, 2528.
11 J. Barber, R. Keck and J. Retey, Tetrahedron Lett., 1982, 23, 1549.
12 D. J. Bailey, D. OHagan and M. Tavasli, Tetrahedron: Asymmetry, 1997, 8, 149.
13 GAUSSIAN98; M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. HeadGordon, E. S. Replogle and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
14 A. E. Reed, L. A. Curtis and F. Weinhold, Chem. Rev., 1988, 88, 899.
15 J. A. K. Howard, V. J. Hoy, D. O'Hagan and G. T. Smith, Tetrahedron, 1996, 52, 12613.
16 J. D. Dunitz and R. Taylor, Chem. Eur. J., 1997, 3, 89.
17 Y. Takeuchi, M. Nabetani, K. Takagi, T. Hagi and T. Koizumi, J. Chem. Soc., Perkin Trans. 1, 1991, 49.

18 P. D. Bailey, A. N. Boa, G. A. Crofts, M. van Diepen, M. Halliwell, R. E. Gammon and M. J. Harrison, Tetrahedron Lett., 1989, 30, 7457.

